
Lab 2
Psychology 319 (GCM)

Instructions. Work through the lab, saving the output as you go. If you work
in Microsoft Word, you can easily copy any graph to Word via the clipboard.
Numerical output may also be copied easily by highlighting, moving it to the
clipboard, then copying into Word. However, you should format R output
in TrueType Courier New font so that it is monospaced. Output from this
lab is to be handed in by Monday, February 8. Your output file should be
named LAST_FIRST_LAB2.DOC, where LAST is your last name, and FIRST is
your first name. Any additional files should have the same naming scheme,
except the file extension should be correct. You may add any description
text you wish after LAB2 in the file name.

Preamble. Today’s lab involves the use of R’s simulation capabilities to
explore certain aspects of multilevel models and longitudinal data.

1 Introduction

One of the nice things about R is the ease with which it can be used to
do Monte Carlo simulations. We shall employ some R library routines I
have created. These can be downloaded, along with the documentation,
from the R Code and Support Materials section of the course website. After
downloading the R file to your working directory (remember to right-click,
add the .R extension, and save it with the “all files” attribute), you can add
the commands in my library to your session with the command

> source("Steiger R Library Functions.R")

Several of these functions are highly specialized for use in multivariate anal-
ysis. However, two functions will be very useful for us:

1. MultivariateNormalSample creates a simulated sample from a mul-
tivariate normal distribution with desired mean vector and covariance
matrix.

2. MakeExactData creates a simulated sample with sample mean and
covariance matrix exactly equal to what is requested.

1



You should consult the documentation file to see how to call these func-
tions, but there are also some examples below.

We use MultivariateNormalSample to analyze how statistics perform
in their assumed natural environment, that is, when a particular population
situation holds and statistics are used on a sample to estimate the nature of
the population. We use MakeExactData for two distinct purposes:

1. To create data whose means and covariances (or correlations) match
some published results or examples that do not include the raw data,
so that we can replicate the analyses that were published.

2. To investigate the truth of general statements about the relationships
between quantities that are solely a function of variances, covariances,
and means.

Consider a simple example of the second usage. Suppose you didn’t know
much about statistics and someone told you that the correlation between X
and Y always satisfies the rule

rx,y =
sx,y
sxsy

(1)

If you had computational routines for computing covariances, correlations,
and standard deviations, you could, in a few minutes, create thousands of
examples of real data with a given rx,y and quickly verify that the relation-
ship is never falsified. While lack of falsification is not proof of truth, it can
be very suggestive.

What many people fail to realize is that the same principle can be ex-
tended beyond sample statistics to population statistics, because any sample
of size n can be considered to be a discrete multivariate population where
every vector of results has equal probability. So if a theoretical result is
rendered in terms of only means, variances, covariances, and correlations,
we can examine it using essentially the same technique.

Let me illustrate this with a very basic example. Suppose I set the ran-
dom seed to 12345 and generate a set of 3 observations with a sample correla-
tion of exactly .50. Notice how I use the function CompleteSymmetricMatrix

to produce the input covariance matrix. This isn’t necessary with a 2 × 2
covariance matrix, but saves a substantial amount of time if you have to
enter a larger matrix. You simply enter the lower triangle, and the function
produces the complete matrix.

2



> set.seed(12345)

> means <- c(0,0)

> covariance.matrix <- CompleteSymmetricMatrix(c(1,.5,1))

> data <- MakeExactData(means,covariance.matrix,3)

> data

[,1] [,2]

[1,] 1.01823865 0.03753419

[2,] -0.03753419 0.98070446

[3,] -0.98070446 -1.01823865

> cov(data)

[,1] [,2]

[1,] 1.0 0.5

[2,] 0.5 1.0

> column.means <- apply(data,2,mean)

> round(column.means,10)

[1] 0 0

As you can see, the data have, within an acceptable level of rounding
error, precisely the statistical sample values that were requested. If we look
at the 3 vectors of scores in the object data, we realize that if population
covariances were defined in terms of a denominator of n− 1, we could con-
sider the scores to be the 3 equally likely outcomes in a discrete bivariate
distribution with means of 0, 0 and a covariance matrix having variances of
1 and covariances of .5. Remember, though, that the population covariances
are computed with n in the denominator. We can quickly create a function
to compute them.

> pop.cov <- function(data){

+ n <- length(data[,1])

+ return(((n-1)/n)*cov(data))

+ }

> pop.cov(data)

[,1] [,2]

[1,] 0.6666667 0.3333333

[2,] 0.3333333 0.6666667

In other words, although the above data have sample variances of 1 and a
sample covariance of .5, if they were to be considered the entire population,
then they would have variances of 2/3 and covariances of 1/3.

3



It would be a routine matter to adjust the data so that the population co-
variances and means were as desired. Actually, the function MakeExactData

will do this for you, if you add the statement use.population = TRUE to
the input parameters. Below, we see that, using this input parameter, we
can create a “statistical population” with exactly the “population means”
and “population covariance structure” that we want.

> data2 <- MakeExactData(means,covariance.matrix,3,use.population=TRUE)

> pop.cov(data2)

[,1] [,2]

[1,] 1.0 0.5

[2,] 0.5 1.0

> apply(data2,2,mean)

[1] 1.849468e-17 0.000000e+00

2 Difference Scores and their Reliability

Last week, you derived some results on the reliability of difference scores,
and we’ll begin by using R to produce data that demonstrate some of the
theoretical results. Then we’ll move on to produce more general multilevel
data. Let’s generate some artificial data that occur at two time periods. We
can generate the data via a classical true score model, and have the distinct
advantage of knowing the true scores as well as the observed scores.

There are several versions of the true score model that we could work
with. Let’s work with the following simplified model, given in the last home-
work assignment.

1. Xi = Ti + Ei, i = 1, 2

2. T1 and T2 correlate ρ12

3. The T ’s the E’s are uncorrelated

4. The T ’s have variances of ρx, the E’s have variances 1−ρx, so the X’s
have variances of 1

5. The T ’s and E’s are assumed to have means of zero

6. The T ’s and E’s are generated from unit variance variables ξ and ε

via the formulas Ti = ρ
1/2
x ξi and Ei = (1 − ρx)1/2εi

4



I asked you on the homework assignment to come up with a bunch of
formulas. One formula I gave you to prove is

ρx1,x2 = ρxρ12 (2)

If you look carefully at the assumptions I listed above, you can see that,
if we place the variables ξ1, ξ2, ε1, and ε2 in a vector, it would have a
variance-covariance matrix given by

1 ρ12 0 0
ρ12 1 0 0
0 0 1 0
0 0 0 1

 (3)

So, creating the T , E, and X variables is quite straightforward. Let’s
write some R functions to do that. Read the comments carefully and make
sure you understand how this routine works.

> create.X1X2.data <- function(rho12,rhox,n,use.population=FALSE)

+ {

+ means <- c(0,0,0,0)

+ covariance.matrix <- CompleteSymmetricMatrix(c(1,rho12,1,0,0,1,0,0,0,1))

+ data <- MakeExactData(means,covariance.matrix,

+ n,use.population) ## Create data for xi's and epsilons

+ xi1 <- data[,1] ## Grab variables

+ xi2 <- data[,2] ## from appropriate columns

+ epsilon1 <- data[,3] ## of the

+ epsilon2 <- data[,4] ## data matrix

+ T1 <- sqrt(rhox)*xi1 ## Then create

+ T2 <- sqrt(rhox)*xi2 ## T and E variables

+ E1 <- sqrt(1-rhox)*epsilon1

+ E2 <- sqrt(1-rhox)*epsilon2

+ X1 <- T1 + E1 ## Next create X1 and X2

+ X2 <- T2 + E2 ## Put vars in a data frame & return

+ return(data.frame(X1,X2,T1,T2,E1,E2))

+ }

Suppose we now run this routine and create some data.

> data2 <- create.X1X2.data(0.50,0.80,100,use.population=TRUE)

> cor(data2)

5



X1 X2 T1 T2 E1

X1 1.000000e+00 4.000000e-01 8.944272e-01 4.472136e-01 4.472136e-01

X2 4.000000e-01 1.000000e+00 4.472136e-01 8.944272e-01 -9.990715e-16

T1 8.944272e-01 4.472136e-01 1.000000e+00 5.000000e-01 -4.789514e-17

T2 4.472136e-01 8.944272e-01 5.000000e-01 1.000000e+00 -1.067073e-16

E1 4.472136e-01 -9.990715e-16 -4.789514e-17 -1.067073e-16 1.000000e+00

E2 -8.514050e-16 4.472136e-01 5.966110e-17 -1.948826e-16 -2.012898e-15

E2

X1 -8.514050e-16

X2 4.472136e-01

T1 5.966110e-17

T2 -1.948826e-16

E1 -2.012898e-15

E2 1.000000e+00

From the correlation matrix, we can see that the correlation between X1

and X2 is indeed equal to 0.50 × 0.80 = 0.40. So, for this one randomly
created data set, the rule holds. Let’s try it again.

> data2 <- create.X1X2.data(0.40,0.90,100,use.population=TRUE)

> round(cor(data2),3)

X1 X2 T1 T2 E1 E2

X1 1.000 0.360 0.949 0.379 0.316 0.000

X2 0.360 1.000 0.379 0.949 0.000 0.316

T1 0.949 0.379 1.000 0.400 0.000 0.000

T2 0.379 0.949 0.400 1.000 0.000 0.000

E1 0.316 0.000 0.000 0.000 1.000 0.000

E2 0.000 0.316 0.000 0.000 0.000 1.000

This time, we used input values of .40 and .90, and again observe the
expected result, i.e., the correlation between X1 and X2 is indeed equal to
0.40 × 0.90 = 0.36.

Problem 1. Another formula I gave you is

ρD =
ρx − ρx1,x2

1 − ρx1,x2

(4)

where ρD is the reliability of D, ρx is the reliability of X1 and of X2, and
ρx1,x2 is the correlation between the observed scores X1 and X2.

Following the approach I used above, create two data sets that corrobo-
rate the formula for the reliability of the difference score in the population.

6



Demonstrate that the relationship shown in the formula for ρD holds in your
data.

3 Multilevel Data

Creating simulated multilevel data with various characteristics is also possi-
ble with R. Again, the advantage we have is that we can actually know the
population parameters that yielded the data. Let’s choose a simple two-level
model like the one in the lecture notes. At level 1, we have

Yij = β0j + β1jXij + rij (5)

The rij are regression residuals and are assumed to be independently and
identically normally distributed with a mean of 0 and a variance of σ2.

At level 2, we have

β0j = γ00 + u0j (6)

β1j = γ10 + u1j (7)

The β0s and β1s are allowed to correlate, so they have a covariance matrix T
that is not necessarily diagonal. Their distribution is bivariate normal, as is
the joint distribution of the u0j and u1j . Another way of writing the above
assumptions is that (β0j , β1j) is a vector with a bivariate normal distribution
having a mean vector of (γ00, γ10) and a covariance matrix of

T =

[
τ11 τ21
τ21 τ22

]
(8)

Problem 2. Write your own routine to create the data, but also keep
the actual β values as part of the output. The nj sample sizes should vary
randomly between 20 and 50 across j. There should be 50 schools. To keep
life simple, assume just one classroom for each school, so there is no need
to keep separate ids for the classrooms. Your routine should return a data
frame that includes a school id id2 and a subject id id1.

I suggest the following approach:

1. Assume that the (β0j , β1j) vector has a bivariate normal distribution
with mean vector (8.00, 0.70) and covariance matrix

T =

[
20.00 −0.72
−0.72 0.03

]
(9)

These values are similar to what we saw in the JSP file.

7



2. For each school(class), sample the β values randomly, using my mul-
tivariate normal sampling routine, and randomly sample the number
of students uniformly from the interval (20,50).

3. For each student, sample a residual rij randomly from a normal dis-
tribution with a mean of 0 and a variance of 30.

Now comes the interesting part, the Xij . Note that the standard ap-
proaches to multilevel modeling leave a great big blank here by assuming
that the Xij values are fixed, or given. In other words, they are not mod-
eled as having arisen through a sampling process. Now, in a number of cases
the X1j values are, in fact, fixed. However, in this case, they clearly arise
through a random sampling process, even if all the students in a given class
are included in the experiment.

In other words, when we sample a school and a class within that school,
we not only sample β values, we also sample a set of X values along with
them. We can view these, within each school, as a “mini-population.”

Without extensive information about the nature of the experiment, it
may be difficult and/or presumptuous to propose a sampling model for the
classrooms. However, clearly, the characteristics of the Xij vary across class-
rooms.

In our case, let’s keep things simple. Let’s assume that the population
mean for the Raven test is 25, and the population variance is also 25, and
all variation across classrooms is essentially random. So simply sample nj
values from the normal distribution with mean 25 and standard deviation
5. After constructing the Y values, round off the X and Y values to integer
form. Finally, put everything into a data frame, including X, Y , id1, id2,
β0j , β1j , and rij values for each student.

4 Analyzing the Multilevel Data

Problem 3. Once you have your data file, analyze the multilevel model using
R just as we did in class. Produce a plot of the individual school trajectories
as estimated from the sample data. Compare the fixed and random effect
estimates in the output from R with the numbers we used to construct the
data.

8


